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Introduction - Generative Models

Given some x observed from underlying distribution, our interest is
to find

qθ(x) ∼ p(x)

which enables us to

▶ obtain samples from qθ(x).

▶ compute likelihood of any x .

For high-dimensional, intractable, and multimodal real-life data
distribution, this is extremely hard.
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Introduction - Generative Models

▶ Adversarial Learning:
▶ Generator - simulating sampling process.
▶ Discriminator - classify samples as either real(from domain) or

fake(from generator).

▶ Likelihood-based Learning:
▶ Assigning high likelihood log p(x) to observed samples x by

maximizing the Evidence Lower Bound:

log p(x) ≥ E[log
p(x , z)

qθ(z |x)
] (1)

▶ Energy-based Learning:
▶ Parameterize an energy function fθ that

qθ(x) =
1

Z
e−fθ(x) ∼ p(x) (2)
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Diffusion Model

▶ Intersection of both Likelihood-based and Energy-based
methods.

▶ Forward process:
Progressively destruct an observed signal (data) to Gaussian
noise

▶ Backward process:
Progressively reconstruct a signal (sample) from Gaussian
noise
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Diffusion Model - Forward Process

Explicitly maintain the process as a Markov Chain, we have

q(x1, . . . , xT |x0) =
T∏
t=1

q(xt |xt−1) (3)

Each step in the forward process is defined by

q(xt |xt−1) = (xt ;
√
αtxt−1, (1− αt)I) (4)

where we assume x0 ∼ p(x), xT ∼ N (0, I).
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Diffusion Model - Backward Process

Given our Markovian forward process, if we have a pθ(xt−1|xt) that
is strictly inverting q(xt |xt−1) for ∀t ∈ {1, . . . ,T}, starting from
ε ∼ N (0, I), we could recursively run pθ backward in time to
reconstruct the signal.
How to obtain pθ?

Your Short Title Willis Ma



Introduction Diffusion Model Score-Based Model Flow-Based Model Experiments

Frame Title

By (4), we can show that

q(xt |x0) = N (

√√√√ t∏
i=1

αi , (1−
t∏

i=1

αi )I) (5)

= N (
√
ᾱtx0, (1− ᾱt)I) (6)

q(xt−1|xt , x0) = N (µq(xt , x0),Σq(t)) can thus be derived by Bayes
rule. Then we simply optimize pθ ∼ N (µθ,Σq(t)) by

argmin
θ

∥µθ(xt , t)− µq(xt , x0)∥2 (7)

Furthermore, with some reparametrization tricks we can see that
(7) can be transformed into a simpler objective

argmin
θ

ω(t)∥εθ(xt , t)− ε∥2 (8)

for ε ∼ N (0, I).
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Diffusion Model - Backward Process

As in likelihood-based methods, we could also directly optimize
over ELBO as given in (1)

argmax
θ

E[log
pθ(x0, x1, . . . , xT )

q(x1, . . . , xT |x0)
] (9)

plug in (3) and

pθ(x0, x1, . . . , xT ) = p(xT )
T∏
t=1

pθ(xt−1|xt) (10)

we can show that (9) is equivalent to (7) up to scaling factors.
Since pθ(xt−1|xt) does not depending on x0, we could start from
xT ∼ N (0, I) and obtain the reconstructed signal from noise.
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Diffusion Model - Energy Function

From (2), we have

∇ log pθ(x) = ∇ log(
1

Z
)−∇fθ(x) ≃ −∇fθ(x) (11)

By Tweedie’s formula, we have

Eq(xt |x0)[µxt |xt ] = xt + (1− ᾱt)∇ log p(x) (12)

→ x0 =
xt + (1− ᾱt)∇ log p(x)√

ᾱt
(13)

Plug into (7), we see that optimizing over score function is
equivalent to optimizing over mean.
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Diffusion - what’s the caveats?

▶ Sampling too expensive! T ∼ 1000

▶ Increasing exposure bias throughout different denoising steps.

▶ Unable to calculate the exact likelihood log p(t).
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From Discrete to Continuous

Let’s go continuous!
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From Discrete to Continuous

We could rewrite (4) in terms of a perturbation kernel, that

xt =
√
αtxt−1 +

√
(1− αt)ε (14)

where ε ∈ N (0, I). Taking the limit of T → ∞, the limit of the
Discrete Markov Chain is given by

dxt =
√
α(t)xdt − 1

2
α(t)dw (15)

where w is the standard Brownian motion, and t ∈ [0, 1]. We see
that (15) coincides with an Itô SDE in forward time.
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From Discrete to Continuous

By (Reverse-Time Diffusion Equation), (15) has a corresponding
SDE in reverse time expressed as

dx = [
√
α(t)x − 1

4
α(t)2∇ log pθ(xt , t)]dt −

1

2
α(t)dw̄ (16)

where dw̄ is the reverse time standard Brownian motion.
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From Discrete to Continuous

With a slight abuse of notation, we denote the mean and variance
of pt(xt) αt , σt . By (Applied Stochastic Differential Equations),
we know

dαt

dt
= E{f (t)x} =

√
α(t)αt (17)

dσt
dt

= E{(f (t)x − E[f (t)x ])(x − αt)
T}

+ E{(x − αt)(f (t)x − E[f (t)x ])T}+ E{g(t)2I} (18)

Again, by Tweedie’s formula and the fact that xt = αtx + σtε, we
have

∇ log pt(xt) = −σtε (19)
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From Discrete to Continuous

We see that (19) can be optimized using (8)

argmin
θ

∥sθ(xt , t)−∇ log pt(xt)∥2 = argmin
θ

ω(t)∥εθ(xt , t)− ε∥2

(20)

and that (16) can then be readily solved by numerical methods
(Euler-Maruyama) to obtain

x(0) ∼ p(x)
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SDE - pitfalls

▶ Estimated score could be inaccurate in low density areas -
derailing the trajectory from the beginning.

▶ Fluctuating on small time interval - still demanding large
number of time steps to reach high precision.

▶ Still unable to calculate exact likelihood.
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From SDE to ODE

We know that marginal density of the forward time SDE is
uniquely determined by a Fokker-Planck equation

∂

∂t
pt(x) = −

∑ ∂

∂xi
(f (t)xpt(x)) +

1

2

∑∑ ∂2

∂xixj
(g(t)pt(x))

(21)

from which we could derive

f̃ (x , t) = f (t)x − 1

2
g(t)2∇ log p(x) (22)

that satisfies the continuity equation

∂

∂t
pt(x) = −∇[f̃ (x , t)pt(x)] (23)

Your Short Title Willis Ma



Introduction Diffusion Model Score-Based Model Flow-Based Model Experiments

From SDE to ODE

f̃ (x , t) thus shares the marginal density as the SDE in (15). Since
the corresponding diffusion term to f̃ is 0, we now have a
probability flow ODE

dx = f̃ (x , t)dt (24)

with x(0) = x ∼ p(x)
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Flow ODE

It’s surprising how many fast and stable numerical methods we
could use to solve (24); moreover, now the likelihood can be
explicitly computed by (23) with change of variable

∂

∂t
pt(x) = −div(f̃ (x , t)) (25)

yielding another ODE to be solved.
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Flow ODE

Yet the inaccuracy of score function in low density area would still
deviate our ODE from its optimal trajectory; could we alleviate this
issue?
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Flow ODE

Yes! In fact, we could define

I (x0, x1, t) = αtx0 + σtx1 (26)

for x0 ∈ p(x), x1 ∈ q(x), αt , σt ∈ [0, 1] and that α0 = σ1 = 1,
α1 = σ0 = 0.
Furthermore, define vt(I (x0, x1, t)) = ∂t I (x0, x1, t). For pt that
satisfies (23) with vt , it can be shown p1 ∼ q, p0 ∼ p. To
approximate vt , we simply optimize over the objective

argmin
θ

∥v(I (x0, x1, t))− (α̇tx0 + σ̇tx1)∥2 (27)
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Flow ODE

▶ Fast sampling speed.

▶ Exact likelihood.

▶ When x1 ∼ N (0, I), I (x0, x1, t) corresponds to perturbation
kernel of score-based model with exact same αt and σt in
(17) and (18). Yet, the dynamics of I would not vanish near 0
and 1, preventing inaccuracy from initial time steps when
sampling.

Your Short Title Willis Ma



Introduction Diffusion Model Score-Based Model Flow-Based Model Experiments

Experiments

We will be conducting experiments using both Diffusion model,
Score-based Model, and Flow-based Model, and examining their
performance on conditional image generation task.
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Density Path

We followed Yang Song’s Score-Based Generative Model paper,
using

αt = exp[−1

4
t2(βmax − βmin)−

1

2
tβmin] (28)

σt =

√
1− 1 exp[−1

2
t2(βmax − βmin)− tβmin] (29)

where we take βmax = 20, βmin = 0.1.
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Backbone - DiT

To estimate εθ (8), sθ (13), vθ (27), we used Scalable Diffusion
Transformer (DiT) as our backbone. The structure is as follows:

Figure 1: DiT structure.
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Backbone - DiT

Different configurations of DiT are provided

Figure 2: DiT configurations.

We will be using DiT-B for all of our experiments.
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Dataset - ImageNet

We conducted all of our experiments on ImageNet, a large scale
dataset with ∼ 1.2 million images splitted into 1000 different
classes.
We train all of our three models on downsampled space Z of
256x256x3 resolution images from ImageNet, where Z ⊂ R32x32x4,
with class labels inputs as extra conditionings.
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Downsampling - Variational Autoencoder (VAE)

We use an off-the-shelf pre-trained Variational Autoencoder model
to downsample original images. It contains an encoder E and a
decoder D, that

E(x) ∼ p(z |x)
D(z) ∼ q(x |z) (30)

so that D(E(x)) ∼ x
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Metric - Fréchet inception distance

We use Fréchet Inception Distance (FID) as our evaluation metric,
which is defined as

dk(N (µk ,Σk),N (µ′,Σ′)) = ∥µk − µ′∥2 + tr(Σk +Σ′ − 2(Σ
1
2
kΣ

′Σ
1
2
k )

1
2 )

(31)

where we obtain µ′, Σ′ from ImageNet training data, and µk , Σk

from k generated samples of our models. We evaluate FID-k for
k ∈ {10000, 50000}.
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Quantitative results - FID-10K

Figure 3: FID-10K results.
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Quantitative results - FID-50K

Figure 4: FID-50K results.
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Quantitative results

Model FID-10K FID-50K

Diffusion 43.819 41.153
Score 41.734 38.858
Flow 42.163 39.125

Table 1: FID scores.
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Qualitative results
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Qualitative results
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Qualitative results
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Qualitative results
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Conclusion

We examined the performance of Diffusion, Score-Based and
Flow-Based models on large scale conditional image generation
tasks, demonstrated their capabilities in generating high-quality
images, and showed the discrepancy in FID scores under different
objective. We plan to explore further and see

▶ what contribute to the gap in FID score?

▶ will the performance change with different density path?
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Thank you!
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