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Introduction
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Given some x observed from underlying distribution, our interest is
to find
g6(x) ~ p(x)
which enables us to
> obtain samples from gp(x).
» compute likelihood of any x.

For high-dimensional, intractable, and multimodal real-life data
distribution, this is extremely hard.
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» Adversarial Learning:

> Generator - simulating sampling process.
> Discriminator - classify samples as either real(from domain) or
fake(from generator).

> Likelihood-based Learning:

> Assigning high likelihood log p(x) to observed samples x by
maximizing the Evidence Lower Bound:

log p(x) = E[log 40 (21%)

» Energy-based Learning:
> Parameterize an energy function fy that

Q) = 370 ~ p(x) 2
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> Intersection of both Likelihood-based and Energy-based
methods.

» Forward process:
Progressively destruct an observed signal (data) to Gaussian
noise

» Backward process:
Progressively reconstruct a signal (sample) from Gaussian
noise
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Explicitly maintain the process as a Markov Chain, we have

q(x1, ..., x7|x0) = H q(xe|xe—1) (3)

t=1

Each step in the forward process is defined by

q(xe|xe—1) = (xe; varxe—1, (1 — a)l) (4)

where we assume xp ~ p(x), x7 ~ N(0,1).
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Given our Markovian forward process, if we have a pp(x¢—1|x¢) that
is strictly inverting q(x¢|x¢—1) for Vt € {1,..., T}, starting from

e ~ N(0,1), we could recursively run py backward in time to
reconstruct the signal.

How to obtain py?
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By (4), we can show that

q(xtlx0) = N(

[Tei- =T (5)
i=1 i=1
= N(Véix, (1 - a)l) (6)

q(xe—1|x¢, x0) = N (pg(xe, %0), Lq(t)) can thus be derived by Bayes
rule. Then we simply optimize pg ~ N (pg, Xq(t)) by

arg min [[g(xe, t) — Hq(xe, x0)|I? (M)

Furthermore, with some reparametrization tricks we can see that
(7) can be transformed into a simpler objective

arg minw(t)|leg (e, t) — e|? (8)

for e ~ N(0,1).
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As in likelihood-based methods, we could also directly optimize
over ELBO as given in (1)

Po(X0, X1, - - -, XT)
arg max Ello 9
& 0 [log q(x1,...,xT|x0) )
plug in (3) and
-
po(x0.x1, ., x1) = p(x7) [ | po(xe-1lx) (10)
t=1

we can show that (9) is equivalent to (7) up to scaling factors.
Since py(x¢—1|x¢) does not depending on xg, we could start from
x1 ~ N(0,1) and obtain the reconstructed signal from noise.
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From (2), we have
Viog py(x) = Vlog(3) - VA() = ~VA()  (11)

By Tweedie's formula, we have

Eq(Xt|X0)[/J’Xt|Xt] =Xt + (1 - &t)v log p(X) (12)

Xt + (1 — @)V log p(x)
Vvar

Plug into (7), we see that optimizing over score function is

equivalent to optimizing over mean.

— X0 = (13)
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» Sampling too expensive! T ~ 1000
> Increasing exposure bias throughout different denoising steps.

» Unable to calculate the exact likelihood log p(t).
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Let's go continuous!
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We could rewrite (4) in terms of a perturbation kernel, that

xe = orxe—1+ /(1 — a)e (14)

where £ € N(0,1). Taking the limit of T — oo, the limit of the
Discrete Markov Chain is given by

dxy = v/ a(t)xdt — %a(t)dw (15)

where w is the standard Brownian motion, and t € [0, 1]. We see
that (15) coincides with an 1t6 SDE in forward time.
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By (Reverse-Time Diffusion Equation), (15) has a corresponding
SDE in reverse time expressed as

dx = [\ o a(t )2V log po(xe, t)]dt — fa(t) (16)

where dw is the reverse time standard Brownian motion.

Your Short Title Willis Ma



Introduction Diffusion Model Score-Based Model

( ) [e]e]e]e] Je]

With a slight abuse of notation, we denote the mean and variance
of pe(xt) e, o+ By (Applied Stochastic Differential Equations),

we know
dczt — B{f(t)x} = Va(t)on (17)
doy

2t = B{(F(e)x — EIF()(x — a)) T}
+B{(x - ad)(F(0)x — BIF() T} + E{g(1)  (18)

Again, by Tweedie's formula and the fact that x; = aix + g€, we
have

V log pi(x¢) = —oe (19)
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We see that (19) can be optimized using (8)

argmin [|sy(xe, t) — Vlog pe(x)||* = arg minw(t)leg(xe, t) — |
(20)

and that (16) can then be readily solved by numerical methods
(Euler-Maruyama) to obtain

x(0) ~ p(x)
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P Estimated score could be inaccurate in low density areas -
derailing the trajectory from the beginning.

» Fluctuating on small time interval - still demanding large
number of time steps to reach high precision.

» Still unable to calculate exact likelihood.
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We know that marginal density of the forward time SDE is
uniquely determined by a Fokker-Planck equation

pr(X) Z o (F(Dxpe(x ZZ (g t)pe(x))

(21)
from which we could derive
> 1
F(x, ) = F(t)x — 5g(t)*V log p(x) (22)
that satisfies the continuity equation
0 -
5Pt () = =VIf(x, t)pe(x)] (23)
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f(x, t) thus shares the marginal density as the SDE in (15). Since
the corresponding diffusion term to f is 0, we now have a
probability flow ODE

dx = f(x, t)dt (24)

with x(0) = x ~ p(x)
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It's surprising how many fast and stable numerical methods we
could use to solve (24); moreover, now the likelihood can be
explicitly computed by (23) with change of variable

gtpt(x) = —diV(fN(X, t)) (25)

yielding another ODE to be solved.
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Yet the inaccuracy of score function in low density area would still
deviate our ODE from its optimal trajectory; could we alleviate this
issue?
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Yes! In fact, we could define
I(x0, 1, t) = X0 + 0ex (26)
for xg € p(x), x1 € q(x), at,or € [0,1] and that ag = 01 =1,
a1 = 09 = 0.
Furthermore, define v¢(/(xo, x1, t)) = O¢l(x0, x1, t). For p; that

satisfies (23) with v, it can be shown p; ~ g, po ~ p. To
approximate v;, we simply optimize over the objective

arg mgin lv(I(x0,x1,t)) — (dexo + c'rtxl)H2 (27)
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> Fast sampling speed.

> Exact likelihood.

» When x; ~ N(0,1), /(xo, x1,t) corresponds to perturbation
kernel of score-based model with exact same «; and o in
(17) and (18). Yet, the dynamics of / would not vanish near 0
and 1, preventing inaccuracy from initial time steps when
sampling.
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We will be conducting experiments using both Diffusion model,
Score-based Model, and Flow-based Model, and examining their
performance on conditional image generation task.
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We followed Yang Song’s Score-Based Generative Model paper,
using

1
ap = eXp[_%tz(ﬁmax - ﬁmin) - Etﬁmin] (28)

O = \/1 -1 EXp[—%tz(ﬁmax - Bmin) - tﬁmin] (29)

where we take Bmax = 20, Bmin = 0.1.

Your Short Title Willis Ma



Experiments
00®0000000000000

To estimate ¢¢ (8), sp (13), vy (27), we used Scalable Diffusion
Transformer (DiT) as our backbone. The structure is as follows:
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Figure 1: DiT structure.
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Different configurations of DiT are provided

Model Layers N Hiddensized Heads Gflops a3 -4

DiT-S 12 384 6 14
DiT-B 12 768 12 5.6
DiT-L 24 1024 16 19.7
DiT-XL 28 1152 16 29.1

Figure 2: DiT configurations.

We will be using DiT-B for all of our experiments.
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We conducted all of our experiments on ImageNet, a large scale
dataset with ~ 1.2 million images splitted into 1000 different
classes.

We train all of our three models on downsampled space Z of
256x256x3 resolution images from ImageNet, where Z C R32x32x4
with class labels inputs as extra conditionings.
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We use an off-the-shelf pre-trained Variational Autoencoder model
to downsample original images. It contains an encoder £ and a
decoder D, that

£(x) ~ p(z]x)
D(z) ~ q(xIz) (30)

so that D(E(x)) ~ x
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We use Fréchet Inception Distance (FID) as our evaluation metric,
which is defined as

1

11

e (Nt Zu) N (1 1)) = e — o' ? + te(E + T/ — 2T X'57)2)
(31)

where we obtain p/, ¥’ from ImageNet training data, and gk,

from k generated samples of our models. We evaluate FID-k for
k € {10000, 50000}.
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Figure 3: FID-10K results.
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Figure 4: FID-50K results.
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Model | FID-10K | FID-50K
Diffusion | 43.819 | 41.153
Score 41.734 | 38.858
Flow | 42163 | 39.125

Table 1: FID scores.
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We examined the performance of Diffusion, Score-Based and
Flow-Based models on large scale conditional image generation
tasks, demonstrated their capabilities in generating high-quality
images, and showed the discrepancy in FID scores under different
objective. We plan to explore further and see

> what contribute to the gap in FID score?
» will the performance change with different density path?
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Thank you!
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