	Diffusion Model			
00	000000	000000	000000	000000000000000000000000000000000000000

From Diffusion to Flow

Willis Ma

College of Arts and Science / Courant Institute of Mathematical Science

Oct 13th, 2023

Introduction	Diffusion Model		Experiments
0			

Introduction - Generative Models

Given some \boldsymbol{x} observed from underlying distribution, our interest is to find

 $q_{\theta}(x) \sim p(x)$

which enables us to

- obtain samples from $q_{\theta}(x)$.
- compute likelihood of any x.

For high-dimensional, intractable, and multimodal real-life data distribution, this is extremely hard.

Introduction	Diffusion Model		
00			

Introduction - Generative Models

- Adversarial Learning:
 - Generator simulating sampling process.
 - Discriminator classify samples as either real(from domain) or fake(from generator).
- Likelihood-based Learning:
 - Assigning high likelihood log p(x) to observed samples x by maximizing the Evidence Lower Bound:

$$\log p(x) \ge \mathbb{E}[\log \frac{p(x,z)}{q_{\theta}(z|x)}] \tag{1}$$

- Energy-based Learning:
 - Parameterize an energy function f_{θ} that

$$q_{\theta}(x) = \frac{1}{Z} e^{-f_{\theta}(x)} \sim p(x)$$
(2)

	Diffusion Model •00000	Flow-Based Model	Experiments 000000000000000000000000000000000000
Diffusion Model			

- Intersection of both Likelihood-based and Energy-based methods.
- Forward process: Progressively destruct an observed signal (data) to Gaussian noise
- Backward process: Progressively reconstruct a signal (sample) from Gaussian noise

Diffusion Model		Experiments
00000		

Diffusion Model - Forward Process

Explicitly maintain the process as a Markov Chain, we have

$$q(x_1, \dots, x_T | x_0) = \prod_{t=1}^T q(x_t | x_{t-1})$$
(3)

Each step in the forward process is defined by

$$q(x_t|x_{t-1}) = (x_t; \sqrt{\alpha_t} x_{t-1}, (1 - \alpha_t)\mathbf{I})$$
(4)

where we assume $x_0 \sim p(x)$, $x_T \sim \mathcal{N}(0, \mathbf{I})$.

Diffusion Model		
00000		

Diffusion Model - Backward Process

Given our Markovian forward process, if we have a $p_{\theta}(x_{t-1}|x_t)$ that is strictly inverting $q(x_t|x_{t-1})$ for $\forall t \in \{1, \ldots, T\}$, starting from $\varepsilon \sim \mathcal{N}(0, \mathbf{I})$, we could recursively run p_{θ} backward in time to reconstruct the signal. How to obtain p_{θ} ?

Diffusion Model	Flow-Based Model 0000000	Experiments 00000000000000000

Frame Title

By (4), we can show that

$$q(x_t|x_0) = \mathcal{N}(\sqrt{\prod_{i=1}^t \alpha_i}, (1 - \prod_{i=1}^t \alpha_i)\mathbf{I})$$
(5)
= $\mathcal{N}(\sqrt{\overline{\alpha_t}}x_0, (1 - \overline{\alpha_t})\mathbf{I})$ (6)

 $q(x_{t-1}|x_t, x_0) = \mathcal{N}(\mu_q(x_t, x_0), \Sigma_q(t))$ can thus be derived by Bayes rule. Then we simply optimize $p_{\theta} \sim \mathcal{N}(\mu_{\theta}, \Sigma_q(t))$ by

$$\arg\min_{\theta} \|\mu_{\theta}(x_t, t) - \mu_{q}(x_t, x_0)\|^2$$
(7)

Furthermore, with some reparametrization tricks we can see that (7) can be transformed into a simpler objective

$$\arg\min_{\theta} \omega(t) \|\varepsilon_{\theta}(x_t, t) - \varepsilon\|^2$$
(8)

for $\varepsilon \sim \mathcal{N}(0, \mathbf{I})$.

 Introduction
 Diffusion Model
 Score-Based Model
 Flow-Based Model
 Experiments

 00
 000000
 000000
 0000000
 0000000
 0000000

Diffusion Model - Backward Process

As in likelihood-based methods, we could also directly optimize over ELBO as given in (1)

$$\arg\max_{\theta} \mathbb{E}[\log \frac{p_{\theta}(x_0, x_1, \dots, x_T)}{q(x_1, \dots, x_T | x_0)}]$$
(9)

plug in (3) and

$$p_{\theta}(x_0, x_1, \dots, x_T) = p(x_T) \prod_{t=1}^T p_{\theta}(x_{t-1}|x_t)$$
(10)

we can show that (9) is equivalent to (7) up to scaling factors. Since $p_{\theta}(x_{t-1}|x_t)$ does not depending on x_0 , we could start from $x_T \sim \mathcal{N}(0, \mathbf{I})$ and obtain the reconstructed signal from noise.

Diffusion Model		
00000		

Diffusion Model - Energy Function

From (2), we have

$$abla \log p_{\theta}(x) = \nabla \log(\frac{1}{Z}) - \nabla f_{\theta}(x) \simeq -\nabla f_{\theta}(x)$$
(11)

By Tweedie's formula, we have

$$\mathbb{E}_{q(x_t|x_0)}[\mu_{x_t}|x_t] = x_t + (1 - \bar{\alpha_t})\nabla \log p(x)$$
(12)

$$\rightarrow x_0 = \frac{x_t + (1 - \bar{\alpha}_t) \sqrt{\log p(x)}}{\sqrt{\bar{\alpha}_t}}$$
(13)

Plug into (7), we see that optimizing over score function is equivalent to optimizing over mean.

Diffusion Model 000000	Score-Based Model ●00000	Flow-Based Model	Experiments

Diffusion - what's the caveats?

- Sampling too expensive! $T \sim 1000$
- Increasing exposure bias throughout different denoising steps.
- Unable to calculate the exact likelihood $\log p(t)$.

Diffusion Model	Score-Based Model	
	00000	

Let's go continuous!

Diffusion Model 000000	Score-Based Model 00●000	Flow-Based Model	Experiments 0000000000000000

We could rewrite (4) in terms of a perturbation kernel, that

$$x_t = \sqrt{\alpha_t} x_{t-1} + \sqrt{(1 - \alpha_t)} \varepsilon \tag{14}$$

where $\varepsilon \in \mathcal{N}(0, \mathbf{I})$. Taking the limit of $T \to \infty$, the limit of the Discrete Markov Chain is given by

$$dx_t = \sqrt{\alpha(t)} x dt - \frac{1}{2} \alpha(t) dw$$
 (15)

where w is the standard Brownian motion, and $t \in [0, 1]$. We see that (15) coincides with an Itô SDE in forward time.

Diffusion Model	Score-Based Model	
	000000	

By (Reverse-Time Diffusion Equation), (15) has a corresponding SDE in reverse time expressed as

$$dx = \left[\sqrt{\alpha(t)}x - \frac{1}{4}\alpha(t)^2 \nabla \log p_{\theta}(x_t, t)\right] dt - \frac{1}{2}\alpha(t)d\bar{w} \qquad (16)$$

where $d\bar{w}$ is the reverse time standard Brownian motion.

Diffusion Model	Score-Based Model	
	000000	

With a slight abuse of notation, we denote the mean and variance of $p_t(x_t) \alpha_t$, σ_t . By (Applied Stochastic Differential Equations), we know

$$\frac{d\alpha_t}{dt} = \mathbb{E}\{f(t)x\} = \sqrt{\alpha(t)}\alpha_t$$
(17)
$$\frac{d\sigma_t}{dt} = \mathbb{E}\{(f(t)x - \mathbb{E}[f(t)x])(x - \alpha_t)^T\}$$

$$+ \mathbb{E}\{(x - \alpha_t)(f(t)x - \mathbb{E}[f(t)x])^T\} + \mathbb{E}\{g(t)^2\mathbf{I}\}$$
(18)

Again, by Tweedie's formula and the fact that $x_t = \alpha_t x + \sigma_t \varepsilon$, we have

$$\nabla \log p_t(x_t) = -\sigma_t \varepsilon \tag{19}$$

Diffusion Model	Score-Based Model	
	00000	

We see that (19) can be optimized using (8)

$$\arg\min_{\theta} \|s_{\theta}(x_t, t) - \nabla \log p_t(x_t)\|^2 = \arg\min_{\theta} \omega(t) \|\varepsilon_{\theta}(x_t, t) - \varepsilon\|^2$$
(20)

and that (16) can then be readily solved by numerical methods (Euler-Maruyama) to obtain

$$x(0) \sim p(x)$$

	Diffusion Model 000000	Flow-Based Model ●000000	Experiments 000000000000000000000000000000000000
SDF - nitf	falls		

- Estimated score could be inaccurate in low density areas derailing the trajectory from the beginning.
- Fluctuating on small time interval still demanding large number of time steps to reach high precision.
- Still unable to calculate exact likelihood.

Diffusion Model 000000	Flow-Based Model ○●○○○○○	Experiments 00000000000000000

From SDE to ODE

We know that marginal density of the forward time SDE is uniquely determined by a Fokker-Planck equation

$$\frac{\partial}{\partial t}p_t(x) = -\sum \frac{\partial}{\partial x_i}(f(t)xp_t(x)) + \frac{1}{2}\sum \sum \frac{\partial^2}{\partial x_i x_j}(g(t)p_t(x))$$
(21)

from which we could derive

$$\tilde{f}(x,t) = f(t)x - \frac{1}{2}g(t)^2 \nabla \log p(x)$$
(22)

that satisfies the continuity equation

$$\frac{\partial}{\partial t}p_t(x) = -\nabla[\tilde{f}(x,t)p_t(x)]$$
(23)

	Diffusion Model 000000	Flow-Based Model 00●0000	Experiments 000000000000000000
From SDF	to ODE		

 $\tilde{f}(x,t)$ thus shares the marginal density as the SDE in (15). Since the corresponding diffusion term to \tilde{f} is 0, we now have a probability flow ODE

$$dx = \tilde{f}(x, t)dt \tag{24}$$

with $x(0) = x \sim p(x)$

	Diffusion Model 000000	Flow-Based Model	Experiments 000000000000000000
Flow ODE			

It's surprising how many fast and stable numerical methods we could use to solve (24); moreover, now the likelihood can be explicitly computed by (23) with change of variable

$$\frac{\partial}{\partial t}p_t(x) = -\operatorname{div}(\tilde{f}(x,t))$$
 (25)

yielding another ODE to be solved.

	Diffusion Model 000000	Flow-Based Model 0000●00	Experiments 000000000000000000000000000000000000
Flow ODE			

Yet the inaccuracy of score function in low density area would still deviate our ODE from its optimal trajectory; could we alleviate this issue?

	Diffusion Model 000000	Flow-Based Model 00000●0	Experiments 000000000000000000
Flow ODE			

Yes! In fact, we could define

$$I(x_0, x_1, t) = \alpha_t x_0 + \sigma_t x_1 \tag{26}$$

for $x_0 \in p(x)$, $x_1 \in q(x)$, $\alpha_t, \sigma_t \in [0, 1]$ and that $\alpha_0 = \sigma_1 = 1$, $\alpha_1 = \sigma_0 = 0$. Furthermore, define $v_t(I(x_0, x_1, t)) = \partial_t I(x_0, x_1, t)$. For p_t that satisfies (23) with v_t , it can be shown $p_1 \sim q$, $p_0 \sim p$. To approximate v_t , we simply optimize over the objective

$$\arg\min_{\theta} \|v(I(x_0, x_1, t)) - (\dot{\alpha}_t x_0 + \dot{\sigma}_t x_1)\|^2$$
(27)

	Diffusion Model 000000	Flow-Based Model 000000●	Experiments 000000000000000000
Flow ODE			

- ► Fast sampling speed.
- Exact likelihood.
- When x₁ ~ N(0, I), I(x₀, x₁, t) corresponds to perturbation kernel of score-based model with exact same α_t and σ_t in (17) and (18). Yet, the dynamics of I would not vanish near 0 and 1, preventing inaccuracy from initial time steps when sampling.

	Diffusion Model 000000	Flow-Based Model	Experiments •000000000000000000000000000000000000
Exportmonto			

We will be conducting experiments using both Diffusion model, Score-based Model, and Flow-based Model, and examining their performance on conditional image generation task.

	Diffusion Model 000000	Flow-Based Model	Experiments 000000000000000000000000000000000000
Density Pa	ath		

We followed Yang Song's Score-Based Generative Model paper, using

$$\alpha_t = \exp\left[-\frac{1}{4}t^2(\beta_{\max} - \beta_{\min}) - \frac{1}{2}t\beta_{\min}\right]$$
(28)

$$\sigma_t = \sqrt{1 - 1 \exp[-\frac{1}{2}t^2(\beta_{\max} - \beta_{\min}) - t\beta_{\min}]}$$
(29)

where we take $\beta_{\rm max}=$ 20, $\beta_{\rm min}=$ 0.1.

Diffusion Model 000000	Flow-Based Model 0000000	Experiments

Backbone - DiT

To estimate ε_{θ} (8), s_{θ} (13), v_{θ} (27), we used Scalable Diffusion Transformer (DiT) as our backbone. The structure is as follows:

Figure 1: DiT structure.

	Diffusion Model 000000	Flow-Based Model	Experiments
Backbone	- DiT		

Different configurations of DiT are provided

Model	Layers N	Hidden size d	Heads	Gflops (<i>I</i> =32, <i>p</i> =4)
DiT-S	12	384	6	1.4
DiT-B	12	768	12	5.6
DiT-L	24	1024	16	19.7
DiT-XL	28	1152	16	29.1

Figure 2: DiT configurations.

We will be using DiT-B for all of our experiments.

	Diffusion Model 000000	Flow-Based Model	Experiments
Dataset -	ImageNet		

We conducted all of our experiments on ImageNet, a large scale dataset with \sim 1.2 million images splitted into 1000 different classes.

We train all of our three models on downsampled space \mathcal{Z} of 256x256x3 resolution images from ImageNet, where $\mathcal{Z} \subset \mathbb{R}^{32\times32\times4}$, with class labels inputs as extra conditionings.

Diffusion Model 000000	Flow-Based Model	Experiments

Downsampling - Variational Autoencoder (VAE)

We use an off-the-shelf pre-trained Variational Autoencoder model to downsample original images. It contains an encoder ${\cal E}$ and a decoder ${\cal D}$, that

$$\mathcal{E}(x) \sim p(z|x)$$

 $\mathcal{D}(z) \sim q(x|z)$ (30)

so that $\mathcal{D}(\mathcal{E}(x)) \sim x$

Diffusion Model		Experiments
		000000000000000000000000000000000000000

Metric - Fréchet inception distance

We use Fréchet Inception Distance (FID) as our evaluation metric, which is defined as

$$d_{k}(\mathcal{N}(\mu_{k}, \Sigma_{k}), \mathcal{N}(\mu', \Sigma')) = \|\mu_{k} - \mu'\|^{2} + \operatorname{tr}(\Sigma_{k} + \Sigma' - 2(\Sigma_{k}^{\frac{1}{2}}\Sigma'\Sigma_{k}^{\frac{1}{2}})^{\frac{1}{2}})$$
(31)

where we obtain μ' , Σ' from ImageNet training data, and μ_k , Σ_k from k generated samples of our models. We evaluate FID-k for $k \in \{10000, 50000\}$.

Diffusion Model		Experiments
		00000000000000000

Quantitative results - FID-10K

Figure 3: FID-10K results.

Diffusion Model		Experiments
		00000000000000000

Quantitative results - FID-50K

Figure 4: FID-50K results.

	Diffusion Model			Experiments
00	000000	000000	000000	000000000000000000000000000000000000000

Model	FID-10K	FID-50K
Diffusion	43.819	41.153
Score	41.734	38.858
Flow	42.163	39.125

Table 1: FID scores.

Diffusion Model		Experiments
		000000000000000000000000000000000000000

Diffusion Model		Experiments
		000000000000000000000000000000000000000

Diffusion Model		Experiments
		000000000000000000000000000000000000000

Diffusion Model		Experiments
		000000000000000000000000000000000000000

	Diffusion Model 000000	Flow-Based Model	Experiments 000000000000000000
Conclusion			

We examined the performance of Diffusion, Score-Based and Flow-Based models on large scale conditional image generation tasks, demonstrated their capabilities in generating high-quality images, and showed the discrepancy in FID scores under different objective. We plan to explore further and see

- what contribute to the gap in FID score?
- will the performance change with different density path?

Diffusion Model		Experiments
		0000000000000000

Thank you!